71 research outputs found

    Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes

    Get PDF
    Objective: To test a free-breathing MRI protocol for anatomical and functional assessment during lung cancer radiotherapy by assessing two non-Cartesian acquisition schemes based on T1 weighted 3D gradient recall echo sequence: (i) stack-of stars (StarVIBE) and (ii) spiral (SpiralVIBE) trajectories. Methods: MR images on five healthy volunteers were acquired on a wide bore 3T scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany). Anatomical image quality was assessed on: (1) free breathing (StarVIBE), (2) the standard clinical sequence (volumetric interpolated breath-hold examination, VIBE) acquired in a 20 second (s) compliant breath-hold and (3) 20 s non-compliant breath-hold. For functional assessment, StarVIBE and the current standard breath-hold time-resolved angiography with stochastic trajectories (TWIST) sequence were run as multiphase acquisitions to replicate dynamic contrast enhancement (DCE) in one healthy volunteer. The potential application of the SpiralVIBE sequence for lung parenchymal imaging was assessed on one healthy volunteer. Ten patients with lung cancer were subsequently imaged with the StarVIBE and SpiralVIBE sequences for anatomical and structural assessment. For functional assessment, free-breathing StarVIBE DCE protocol was compared with breath-hold TWIST sequences on four prior lung cancer patients with similar tumour locations. Image quality was evaluated independently and blinded to sequence information by an experienced thoracic radiologist. Results: For anatomical assessment, the compliant breath-hold VIBE sequence was better than free-breathing StarVIBE. However, in the presence of a non-compliant breath-hold, StarVIBE was superior. For functional assessment, StarVIBE outperformed the standard sequence and was shown to provide robust DCE data in the presence of motion. The ultrashort echo of the SpiralVIBE sequence enabled visualisation of lung parenchyma. Conclusion: The two non-Cartesian acquisition sequences, StarVIBE and SpiralVIBE, provide a free-breathing imaging protocol of the lung with sufficient image quality to permit anatomical, structural and functional assessment during radiotherapy. Advances in knowledge: Novel application of non-Cartesian MRI sequences for lung cancer imaging for radiotherapy. Illustration of SpiralVIBE UTE sequence as a promising sequence for lung structural imaging during lung radiotherapy

    A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning

    Get PDF
    Objective: Manual contouring and registration for radiotherapy treatment planning and online adaptation for cervical cancer radiation therapy in computed tomography (CT) and magnetic resonance images (MRI) are often necessary. However manual intervention is time consuming and may suffer from inter or intra-rater variability. In recent years a number of computer-guided automatic or semi-automatic segmentation and registration methods have been proposed. Segmentation and registration in CT and MRI for this purpose is a challenging task due to soft tissue deformation, inter-patient shape and appearance variation and anatomical changes over the course of treatment. The objective of this work is to provide a state-of-the-art review of computer-aided methods developed for adaptive treatment planning and radiation therapy planning for cervical cancer radiation therapy. Methods: Segmentation and registration methods published with the goal of cervical cancer treatment planning and adaptation have been identified from the literature (PubMed and Google Scholar). A comprehensive description of each method is provided. Similarities and differences of these methods are highlighted and the strengths and weaknesses of these methods are discussed. A discussion about choice of an appropriate method for a given modality is provided. Results: In the reviewed papers a Dice similarity coefficient of around 0.85 along with mean absolute surface distance of 2-4. mm for the clinically treated volume were reported for transfer of contours from planning day to the treatment day. Conclusions: Most segmentation and non-rigid registration methods have been primarily designed for adaptive re-planning for the transfer of contours from planning day to the treatment day. The use of shape priors significantly improved segmentation and registration accuracy compared to other models

    Multiparametric magnetic resonance imaging in mucosal primary head and neck cancer: A prospective imaging biomarker study

    Get PDF
    Background: Radical radiotherapy, with or without concomitant chemotherapy forms the mainstay of organ preservation approaches in mucosal primary head and neck cancer. Despite technical advances in cancer imaging and radiotherapy administration, a significant proportion of patients fail to achieve a complete response to treatment. For those patients who do achieve a complete response, acute and late toxicities remain a cause of morbidity. A critical need therefore exists for imaging biomarkers which are capable of informing patient selection for both treatment intensification and de-escalation strategies. Methods/design: A prospective imaging study has been initiated, aiming to recruit patients undergoing radical radiotherapy (RT) or chemoradiotherapy (CRT) for mucosal primary head and neck cancer (MPHNC). Eligible patients are imaged using FDG-PET/CT before treatment, at the end of week 3 of treatment and 12 weeks after treatment completion according to local imaging policy. Functional MRI using diffusion weighted (DWI), blood oxygen level-dependent (BOLD ) and dynamic contrast enhanced (DCE) sequences is carried out prior to, during and following treatment. Information regarding treatment outcomes will be collected, as well as physician-scored and patient-reported toxicity. Discussion: The primary objective is to determine the correlation of functional MRI sequences with tumour response as determined by FDG-PET/CT and clinical findings at 12 weeks post-treatment and with local control at 12 months post-treatment. Secondary objectives include prospective correlation of functional MRI and PET imaging with disease-free survival and overall survival, defining the optimal time points for functional MRI assessment of treatment response, and determining the sensitivity and specificity of functional MRI sequences for assessment of potential residual disease following treatment. If the study is able to successfully characterise tumours based on their functional MRI scan characteristics, this would pave the way for further studies refining treatment approaches based on prognostic and predictive imaging data

    Comparison of four dimensional computed tomography and magnetic resonance imaging in abdominal radiotherapy planning

    Get PDF
    Background and Purpose: Four-dimensional (4D) computed tomography (CT) is widely used in radiotherapy (RT) planning and remains the current standard for motion evaluation. We assess a 4D magnetic resonance imaging (MRI) sequence in terms of motion and image quality in a phantom, healthy volunteers and patients undergoing RT. Materials and Methods: The 4D-MRI sequence is a prototype T1-weighted 3D gradient echo with radial acquisition with self-gating. The accuracy of the 4D-MRI respiratory sorting based method was assessed using a MRICT compatible respiratory simulation phantom. In volunteers, abdominal viscera were evaluated for artefact, noise, structure delineation and overall image quality using a previously published four-point scoring system. In patients undergoing abdominal RT, the tumour (or a surrogate) was utilized to assess the range of motion on both 4D-CT and 4D-MRI. Furthermore, imaging quality was evaluated for both 4D-CT and 4D-MRI. Results: In phantom studies 4D-MRI demonstrated amplitude of motion error of less than 0.2mm for five, seven and ten bins. 4D-MRI provided excellent image quality for liver, kidney and pancreas. In patients, the median amplitude of motion seen on 4D-CT and 4D-MRI was 11.2mm (range 2.8-20.3 mm) and 10.1mm (range 0.7-20.7 mm) respectively. The median difference in amplitude between 4D-CT and 4D-MRI was −0.6mm (range −3.4-5.2 mm). 4D-MRI demonstrated superior edge detection (median score 3 versus 1) and overall image quality (median score 2 versus 1) compared to 4D-CT. Conclusions: The prototype 4D-MRI sequence demonstrated promising results and may be used in abdominal targeting, motion gating, and towards implementing MRI-based adaptive RT

    Commissioning and quality control of a dedicated wide bore 3T MRI simulator for radiotherapy planning

    Get PDF
    Purpose: The purpose of this paper is to describe a practical approach to commissioning and quality assurance (QA) of a dedicated wide-bore 3 Tesla (3T) magnetic resonance imaging (MRI) scanner for radiotherapy planning.Methods: A comprehensive commissioning protocol focusing on radiotherapy (RT) specific requirements was developed and performed. RT specific tests included: uniformity characteristics of radio-frequency (RF) coil, couch top attenuation, geometric distortion, laser and couch movement and an end-to-end radiotherapy treatment planning test. General tests for overall system performance and safety measurements were also performed.Results: The use of pre-scan based intensity correction increased the uniformity from 61.7% to 97% (body flexible coil), from 50% to 90% (large flexible coil) and from 51% to 98% (small flexible coil). RT flat top couch decreased signal-to-noise ratio (SNR) by an average of 42%. The mean and maximum geometric distortion was found to be 1.25 mm and 4.08 mm for three dimensional (3D) corrected image acquisition, 2.07 mm and 7.88 mm for two dimensional (2D) corrected image acquisition over 500 mm × 375 mm × 252 mm field of view (FOV). The accuracy of the laser and couch movement was less than ±1 mm. The standard deviation of registration parameters for the end-to-end test was less than 0.41 mm. An on-going QA program was developed to monitor the system’s performance.Conclusion: A number of RT specific tests have been described for commissioning and subsequent performance monitoring of a dedicated MRI simulator (MRI-Sim). These tests have been important in establishing and maintaining its operation for RT planning.</p

    Commissioning and quality control of a dedicated wide bore 3T MRI simulator for radiotherapy planning

    Get PDF
    Purpose: The purpose of this paper is to describe a practical approach to commissioning and quality assurance (QA) of a dedicated wide-bore 3 Tesla (3T) magnetic resonance imaging (MRI) scanner for radiotherapy planning.Methods: A comprehensive commissioning protocol focusing on radiotherapy (RT) specific requirements was developed and performed. RT specific tests included: uniformity characteristics of radio-frequency (RF) coil, couch top attenuation, geometric distortion, laser and couch movement and an end-to-end radiotherapy treatment planning test. General tests for overall system performance and safety measurements were also performed.Results: The use of pre-scan based intensity correction increased the uniformity from 61.7% to 97% (body flexible coil), from 50% to 90% (large flexible coil) and from 51% to 98% (small flexible coil). RT flat top couch decreased signal-to-noise ratio (SNR) by an average of 42%. The mean and maximum geometric distortion was found to be 1.25 mm and 4.08 mm for three dimensional (3D) corrected image acquisition, 2.07 mm and 7.88 mm for two dimensional (2D) corrected image acquisition over 500 mm × 375 mm × 252 mm field of view (FOV). The accuracy of the laser and couch movement was less than ±1 mm. The standard deviation of registration parameters for the end-to-end test was less than 0.41 mm. An on-going QA program was developed to monitor the system’s performance.Conclusion: A number of RT specific tests have been described for commissioning and subsequent performance monitoring of a dedicated MRI simulator (MRI-Sim). These tests have been important in establishing and maintaining its operation for RT planning

    Ultra-high field MRI for evaluation of rectal cancer stroma ex vivo : correlation with histopathology

    Get PDF
    Purpose or Objective: Current clinical MRI techniques in rectal cancer are unable to differentiate Stage T1 from T2 (invasion of muscularis propria) tumours, and the differentiation of tumour from desmoplastic reaction or fibrous tissue remains a challenge1. Diffusion tensor imaging (DTI) MRI has potential to assess collagen structure and organisation (anisotropy). To our knowledge, there have been no MRI studies assessing DTI MRI for rectal cancer ex vivo. The purpose of this study was to examine DTI MRI derived biomarkers of rectal cancer stromal heterogeneity at high field strength ex vivo

    Comparison of magnetic resonance imaging and computed tomography for breast target volume delineation in prone and supine positions

    Get PDF
    Purpose To\ua0determine whether T2-weighted MRI improves seroma cavity (SC) and whole breast (WB) interobserver conformity for radiation therapy purposes, compared with the gold standard of CT, both in the prone and supine positions. Methods and Materials Eleven observers (2 radiologists and 9 radiation oncologists) delineated SC and WB clinical target volumes (CTVs) on T2-weighted MRI and CT supine and prone scans (4 scans per patient) for 33 patient datasets. Individual observer's volumes were compared using the Dice similarity coefficient, volume overlap index, center of mass shift, and Hausdorff distances. An average cavity visualization score was also determined. Results Imaging modality did not affect interobserver variation for WB CTVs. Prone WB CTVs were larger in volume and more conformal than supine CTVs (on both MRI and CT). Seroma cavity volumes were larger on CT than on MRI. Seroma cavity volumes proved to be comparable in interobserver conformity in both modalities (volume overlap index of 0.57\ua0(95% Confidence Interval (CI) 0.54-0.60) for CT supine and 0.52\ua0(95% CI 0.48-0.56) for MRI supine, 0.56\ua0(95% CI 0.53-0.59) for CT prone and 0.55\ua0(95% CI 0.51-0.59) for MRI prone); however, after registering modalities together the intermodality variation (Dice similarity coefficient of 0.41\ua0(95% CI 0.36-0.46) for supine and 0.38\ua0(0.34-0.42) for prone) was larger than the interobserver variability for SC, despite the location typically remaining constant. Conclusions Magnetic resonance imaging interobserver variation was comparable to CT for the WB CTV and SC delineation, in both prone and supine positions. Although the cavity visualization score and interobserver concordance was not significantly higher for MRI than for CT, the SCs were smaller on MRI, potentially owing to clearer SC definition, especially on T2-weighted MR images

    Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac

    Get PDF
    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening.&#13; Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions.&#13; Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p&gt;0.74) and no interference in raw data for a 20 20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation.&#13; Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons.&#13

    MRI distortion: considerations for MRI based radiotherapy treatment planning

    Get PDF
    Distortion in magnetic resonance images needs to be taken into account for the purposes of radiotherapy treatment planning (RTP). A commercial MRI grid phantom was scanned on 4 different MRI scanners with multiple sequences to assess variations in the geometric distortion. The distortions present across the field of view were then determined. The effect of varying bandwidth on image distortion and signal to noise was also investigated. Distortion maps were created and these were compared to the location of patient anatomy within the scanner bore to estimate the magnitude and distribution of distortions located within specific clinical regions. Distortion magnitude and patterns varied between MRI sequence protocols and scanners. The magnitude of the distortions increased with increasing distance from the isocentre of the scanner within a 2D imaging plane. Average distortion across the phantom generally remained below 2.0 mm, although towards the edge of the phantom for a turbo spin echo sequence, the distortion increased to a maximum value of 4.1 mm. Application of correction algorithms supplied by each vendor reduced but did not completely remove distortions. Increasing the bandwidth of the acquisition sequence decreased the amount of distortion at the expense of a reduction in signal-to-noise ratio (SNR) of 13.5 across measured bandwidths. Imaging protocol parameters including bandwidth, slice thickness and phase encoding direction, should be noted for distortion investigations in RTP since each can influence the distortion. The magnitude of distortion varies across different clinical sites
    • …
    corecore